3.7.87 \(\int (d+e x^2) \sqrt {a+b \text {ArcSin}(c x)} \, dx\) [687]

Optimal. Leaf size=369 \[ d x \sqrt {a+b \text {ArcSin}(c x)}+\frac {1}{3} e x^3 \sqrt {a+b \text {ArcSin}(c x)}-\frac {\sqrt {b} d \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{c}-\frac {\sqrt {b} e \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{4 c^3}+\frac {\sqrt {b} e \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{12 c^3}+\frac {\sqrt {b} d \sqrt {\frac {\pi }{2}} \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{c}+\frac {\sqrt {b} e \sqrt {\frac {\pi }{2}} \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{4 c^3}-\frac {\sqrt {b} e \sqrt {\frac {\pi }{6}} \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{12 c^3} \]

[Out]

1/72*e*cos(3*a/b)*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*b^(1/2)*6^(1/2)*Pi^(1/2)/c^3-1/72
*e*FresnelC(6^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(3*a/b)*b^(1/2)*6^(1/2)*Pi^(1/2)/c^3-1/2*d*co
s(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*b^(1/2)*2^(1/2)*Pi^(1/2)/c-1/8*e*cos(a/b)*Fr
esnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*b^(1/2)*2^(1/2)*Pi^(1/2)/c^3+1/2*d*FresnelC(2^(1/2)/P
i^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*b^(1/2)*2^(1/2)*Pi^(1/2)/c+1/8*e*FresnelC(2^(1/2)/Pi^(1/2)*(
a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*b^(1/2)*2^(1/2)*Pi^(1/2)/c^3+d*x*(a+b*arcsin(c*x))^(1/2)+1/3*e*x^3*(a
+b*arcsin(c*x))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.64, antiderivative size = 369, normalized size of antiderivative = 1.00, number of steps used = 23, number of rules used = 10, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4757, 4715, 4809, 3387, 3386, 3432, 3385, 3433, 4725, 3393} \begin {gather*} \frac {\sqrt {\frac {\pi }{2}} \sqrt {b} e \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{4 c^3}-\frac {\sqrt {\frac {\pi }{6}} \sqrt {b} e \sin \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{12 c^3}-\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} e \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{4 c^3}+\frac {\sqrt {\frac {\pi }{6}} \sqrt {b} e \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{12 c^3}+\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} d \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{c}-\frac {\sqrt {\frac {\pi }{2}} \sqrt {b} d \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{c}+d x \sqrt {a+b \text {ArcSin}(c x)}+\frac {1}{3} e x^3 \sqrt {a+b \text {ArcSin}(c x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)*Sqrt[a + b*ArcSin[c*x]],x]

[Out]

d*x*Sqrt[a + b*ArcSin[c*x]] + (e*x^3*Sqrt[a + b*ArcSin[c*x]])/3 - (Sqrt[b]*d*Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqr
t[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/c - (Sqrt[b]*e*Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*
ArcSin[c*x]])/Sqrt[b]])/(4*c^3) + (Sqrt[b]*e*Sqrt[Pi/6]*Cos[(3*a)/b]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*
x]])/Sqrt[b]])/(12*c^3) + (Sqrt[b]*d*Sqrt[Pi/2]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b
])/c + (Sqrt[b]*e*Sqrt[Pi/2]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(4*c^3) - (Sqrt[
b]*e*Sqrt[Pi/6]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[(3*a)/b])/(12*c^3)

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4715

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Dist[b*c*n, Int[
x*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 4725

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcSin[c*x])^n/(m
+ 1)), x] - Dist[b*c*(n/(m + 1)), Int[x^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; Fre
eQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]

Rule 4757

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p]
&& (GtQ[p, 0] || IGtQ[n, 0])

Rule 4809

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c
^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x],
 x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps

\begin {align*} \int \left (d+e x^2\right ) \sqrt {a+b \sin ^{-1}(c x)} \, dx &=\int \left (d \sqrt {a+b \sin ^{-1}(c x)}+e x^2 \sqrt {a+b \sin ^{-1}(c x)}\right ) \, dx\\ &=d \int \sqrt {a+b \sin ^{-1}(c x)} \, dx+e \int x^2 \sqrt {a+b \sin ^{-1}(c x)} \, dx\\ &=d x \sqrt {a+b \sin ^{-1}(c x)}+\frac {1}{3} e x^3 \sqrt {a+b \sin ^{-1}(c x)}-\frac {1}{2} (b c d) \int \frac {x}{\sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}} \, dx-\frac {1}{6} (b c e) \int \frac {x^3}{\sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}} \, dx\\ &=d x \sqrt {a+b \sin ^{-1}(c x)}+\frac {1}{3} e x^3 \sqrt {a+b \sin ^{-1}(c x)}-\frac {(b d) \text {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 c}-\frac {(b e) \text {Subst}\left (\int \frac {\sin ^3(x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{6 c^3}\\ &=d x \sqrt {a+b \sin ^{-1}(c x)}+\frac {1}{3} e x^3 \sqrt {a+b \sin ^{-1}(c x)}-\frac {(b e) \text {Subst}\left (\int \left (\frac {3 \sin (x)}{4 \sqrt {a+b x}}-\frac {\sin (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{6 c^3}-\frac {\left (b d \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 c}+\frac {\left (b d \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 c}\\ &=d x \sqrt {a+b \sin ^{-1}(c x)}+\frac {1}{3} e x^3 \sqrt {a+b \sin ^{-1}(c x)}+\frac {(b e) \text {Subst}\left (\int \frac {\sin (3 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{24 c^3}-\frac {(b e) \text {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{8 c^3}-\frac {\left (d \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{c}+\frac {\left (d \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{c}\\ &=d x \sqrt {a+b \sin ^{-1}(c x)}+\frac {1}{3} e x^3 \sqrt {a+b \sin ^{-1}(c x)}-\frac {\sqrt {b} d \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{c}+\frac {\sqrt {b} d \sqrt {\frac {\pi }{2}} C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{c}-\frac {\left (b e \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{8 c^3}+\frac {\left (b e \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{24 c^3}+\frac {\left (b e \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{8 c^3}-\frac {\left (b e \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{24 c^3}\\ &=d x \sqrt {a+b \sin ^{-1}(c x)}+\frac {1}{3} e x^3 \sqrt {a+b \sin ^{-1}(c x)}-\frac {\sqrt {b} d \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{c}+\frac {\sqrt {b} d \sqrt {\frac {\pi }{2}} C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{c}-\frac {\left (e \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{4 c^3}+\frac {\left (e \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{12 c^3}+\frac {\left (e \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{4 c^3}-\frac {\left (e \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{12 c^3}\\ &=d x \sqrt {a+b \sin ^{-1}(c x)}+\frac {1}{3} e x^3 \sqrt {a+b \sin ^{-1}(c x)}-\frac {\sqrt {b} d \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{c}-\frac {\sqrt {b} e \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{4 c^3}+\frac {\sqrt {b} e \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{12 c^3}+\frac {\sqrt {b} d \sqrt {\frac {\pi }{2}} C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{c}+\frac {\sqrt {b} e \sqrt {\frac {\pi }{2}} C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{4 c^3}-\frac {\sqrt {b} e \sqrt {\frac {\pi }{6}} C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{12 c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.35, size = 244, normalized size = 0.66 \begin {gather*} \frac {b e^{-\frac {3 i a}{b}} \left (9 \left (4 c^2 d+e\right ) e^{\frac {2 i a}{b}} \sqrt {-\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {3}{2},-\frac {i (a+b \text {ArcSin}(c x))}{b}\right )+9 \left (4 c^2 d+e\right ) e^{\frac {4 i a}{b}} \sqrt {\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {3}{2},\frac {i (a+b \text {ArcSin}(c x))}{b}\right )-\sqrt {3} e \left (\sqrt {-\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {3}{2},-\frac {3 i (a+b \text {ArcSin}(c x))}{b}\right )+e^{\frac {6 i a}{b}} \sqrt {\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {3}{2},\frac {3 i (a+b \text {ArcSin}(c x))}{b}\right )\right )\right )}{72 c^3 \sqrt {a+b \text {ArcSin}(c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)*Sqrt[a + b*ArcSin[c*x]],x]

[Out]

(b*(9*(4*c^2*d + e)*E^(((2*I)*a)/b)*Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[3/2, ((-I)*(a + b*ArcSin[c*x]))/b
] + 9*(4*c^2*d + e)*E^(((4*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[3/2, (I*(a + b*ArcSin[c*x]))/b] - Sq
rt[3]*e*(Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[3/2, ((-3*I)*(a + b*ArcSin[c*x]))/b] + E^(((6*I)*a)/b)*Sqrt[
(I*(a + b*ArcSin[c*x]))/b]*Gamma[3/2, ((3*I)*(a + b*ArcSin[c*x]))/b])))/(72*c^3*E^(((3*I)*a)/b)*Sqrt[a + b*Arc
Sin[c*x]])

________________________________________________________________________________________

Maple [A]
time = 0.39, size = 555, normalized size = 1.50

method result size
default \(-\frac {-36 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b \,c^{2} d -36 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b \,c^{2} d +\sqrt {-\frac {3}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {3 a}{b}\right ) \mathrm {S}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) b e +\sqrt {-\frac {3}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {3 a}{b}\right ) \FresnelC \left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) b e -9 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b e -9 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b e +72 \arcsin \left (c x \right ) \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) b \,c^{2} d +72 \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) a \,c^{2} d +18 \arcsin \left (c x \right ) \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) b e -6 \arcsin \left (c x \right ) \sin \left (-\frac {3 \left (a +b \arcsin \left (c x \right )\right )}{b}+\frac {3 a}{b}\right ) b e +18 \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) a e -6 \sin \left (-\frac {3 \left (a +b \arcsin \left (c x \right )\right )}{b}+\frac {3 a}{b}\right ) a e}{72 c^{3} \sqrt {a +b \arcsin \left (c x \right )}}\) \(555\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)*(a+b*arcsin(c*x))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/72/c^3*(-36*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)
^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*c^2*d-36*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*sin(a/b)*Fr
esnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*c^2*d+(-3/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arc
sin(c*x))^(1/2)*cos(3*a/b)*FresnelS(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*e+(-3/b)^(1/2
)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*sin(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(c*x
))^(1/2)/b)*b*e-9*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1
/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*e-9*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*sin(a/b)*Fres
nelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b*e+72*arcsin(c*x)*sin(-(a+b*arcsin(c*x))/b+a/b)
*b*c^2*d+72*sin(-(a+b*arcsin(c*x))/b+a/b)*a*c^2*d+18*arcsin(c*x)*sin(-(a+b*arcsin(c*x))/b+a/b)*b*e-6*arcsin(c*
x)*sin(-3*(a+b*arcsin(c*x))/b+3*a/b)*b*e+18*sin(-(a+b*arcsin(c*x))/b+a/b)*a*e-6*sin(-3*(a+b*arcsin(c*x))/b+3*a
/b)*a*e)/(a+b*arcsin(c*x))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(a+b*arcsin(c*x))^(1/2),x, algorithm="maxima")

[Out]

integrate((x^2*e + d)*sqrt(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(a+b*arcsin(c*x))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \operatorname {asin}{\left (c x \right )}} \left (d + e x^{2}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)*(a+b*asin(c*x))**(1/2),x)

[Out]

Integral(sqrt(a + b*asin(c*x))*(d + e*x**2), x)

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 1.20, size = 1661, normalized size = 4.50 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)*(a+b*arcsin(c*x))^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(2)*sqrt(pi)*a*b^2*d*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcs
in(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*c) + 1/4*I*sqrt(2)*sqrt(pi)*b^
3*d*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))
/b)*e^(I*a/b)/((I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*c) + 1/2*sqrt(2)*sqrt(pi)*a*b^2*d*erf(1/2*I*sqrt(2)*sqr
t(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^3/sq
rt(abs(b)) + b^2*sqrt(abs(b)))*c) - 1/4*I*sqrt(2)*sqrt(pi)*b^3*d*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqr
t(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^3/sqrt(abs(b)) + b^2*sqrt(ab
s(b)))*c) - sqrt(pi)*a*b*d*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin
(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*sqrt(2)*b^2/sqrt(abs(b)) + sqrt(2)*b*sqrt(abs(b)))*c) - sqrt(pi)*a*b*
d*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)
*e^(-I*a/b)/((-I*sqrt(2)*b^2/sqrt(abs(b)) + sqrt(2)*b*sqrt(abs(b)))*c) + 1/8*sqrt(2)*sqrt(pi)*a*b^2*e*erf(-1/2
*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b
)/((I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*c^3) + 1/16*I*sqrt(2)*sqrt(pi)*b^3*e*erf(-1/2*I*sqrt(2)*sqrt(b*arcs
in(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^3/sqrt(abs(b))
 + b^2*sqrt(abs(b)))*c^3) + 1/8*sqrt(2)*sqrt(pi)*a*b^2*e*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)
) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*c
^3) - 1/16*I*sqrt(2)*sqrt(pi)*b^3*e*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(
b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*c^3) - 1/4*sqrt(pi)*a*
b^(3/2)*e*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs
(b))*e^(3*I*a/b)/((sqrt(6)*b^2 + I*sqrt(6)*b^3/abs(b))*c^3) - 1/24*I*sqrt(pi)*b^(5/2)*e*erf(-1/2*sqrt(6)*sqrt(
b*arcsin(c*x) + a)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6)*b^2 +
 I*sqrt(6)*b^3/abs(b))*c^3) - 1/4*sqrt(pi)*a*b^(3/2)*e*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) + 1/2*
I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*b^2 - I*sqrt(6)*b^3/abs(b))*c^3) + 1/
24*I*sqrt(pi)*b^(5/2)*e*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) +
a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*b^2 - I*sqrt(6)*b^3/abs(b))*c^3) - 1/2*I*sqrt(b*arcsin(c*x) + a)*d*e
^(I*arcsin(c*x))/c + 1/2*I*sqrt(b*arcsin(c*x) + a)*d*e^(-I*arcsin(c*x))/c + 1/4*sqrt(pi)*a*b*e*erf(-1/2*sqrt(6
)*sqrt(b*arcsin(c*x) + a)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6
)*b^(3/2) + I*sqrt(6)*b^(5/2)/abs(b))*c^3) - 1/4*sqrt(pi)*a*b*e*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqr
t(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*sqrt(2)*b^2/sqrt(abs(b)) + sqrt(
2)*b*sqrt(abs(b)))*c^3) - 1/4*sqrt(pi)*a*b*e*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt
(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*sqrt(2)*b^2/sqrt(abs(b)) + sqrt(2)*b*sqrt(abs(b)))
*c^3) + 1/4*sqrt(pi)*a*b*e*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x)
 + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*b^(3/2) - I*sqrt(6)*b^(5/2)/abs(b))*c^3) + 1/24*I*sqrt(b*arcsin(c
*x) + a)*e*e^(3*I*arcsin(c*x))/c^3 - 1/8*I*sqrt(b*arcsin(c*x) + a)*e*e^(I*arcsin(c*x))/c^3 + 1/8*I*sqrt(b*arcs
in(c*x) + a)*e*e^(-I*arcsin(c*x))/c^3 - 1/24*I*sqrt(b*arcsin(c*x) + a)*e*e^(-3*I*arcsin(c*x))/c^3

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \sqrt {a+b\,\mathrm {asin}\left (c\,x\right )}\,\left (e\,x^2+d\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))^(1/2)*(d + e*x^2),x)

[Out]

int((a + b*asin(c*x))^(1/2)*(d + e*x^2), x)

________________________________________________________________________________________